Ein exponentiell geglätteter gleitender Durchschnitt ist ein gewichteter gleitender Durchschnitt, in dem die Gewichtsfaktoren Potenzen von S sind. Die Glättungskonstante Ein exponentiell geglätteter gleitender Durchschnitt wird über alle bisher gesammelten Daten berechnet, anstatt nach einigen Tagen abgehackt zu werden. Für den Tag d ist der exponentiell geglättete gleitende Durchschnitt: Aber das ist nur eine geometrische Sequenz Der nächste Term in einer solchen Folge ist gegeben durch: A d (1- S) M d SA d -1 Die Berechnung wird beschleunigt und das Verständnis diente, wenn wir ersetzen: P 1- S für S in die Gleichung für den nächsten Begriff. Wenn wir eine kleine Algebra machen, entdecken wir: Diese Neuformulierung macht den Betrieb der Glättung sehr intuitiv. Jeden Tag nehmen wir die alte Trendnummer A d -1. Berechnen Sie den Unterschied zwischen ihm und der heutigen Messung M d. Dann fügen Sie einen Prozentsatz dieser Differenz P zu den alten Trendwert erhalten die neue. Offensichtlich ist das nähere P auf 1 (und damit das nähere S ist auf Null), desto mehr beeinflussen die neue Messung auf den Trend. Wenn P 1, der alte Trendwert A d -1 aufhebt und der gleitende Durchschnitt die Daten genau verfolgt. Zum Beispiel berechnen wir mit der Glättungskonstante S 0.9 auf Gewichtsdaten den neuen Trendwert A d aus dem bisherigen Trendwert A d -1 und dem heutigen Gewicht M d als: Bei Diskussionen über exponentiell geglättete gleitende Durchschnitte, insbesondere deren finanzielle Anwendungen, hüten Sie sich vor der Verwirrung der Glättungskonstante S mit der Variante Form P 1- S eingeführt, um die Berechnung zu vereinfachen und die Wirkung der neuen Daten auf den gleitenden Durchschnitt deutlich zu machen. P wird oft als Glättungsprozentsatz bezeichnet, der Begriff 10 Glättung bezieht sich auf eine Berechnung, bei der P 101000.1 und damit S 0.9.OR-Noten eine Reihe von einleitenden Notizen zu Themen sind, die unter die breite Überschrift des Feldes der Operationsforschung fallen ( ODER). Sie wurden ursprünglich von mir in einem einleitenden ODER Kurs benutzt, den ich im Imperial College gebe. Sie sind jetzt für alle Schüler und Lehrer, die an ODER unter den folgenden Bedingungen interessiert sind, zur Verfügung. Eine vollständige Liste der in OR-Notes verfügbaren Themen finden Sie hier. Prognosebeispiele Prognosebeispiel 1996 UG-Prüfung Die Nachfrage nach einem Produkt in jedem der letzten fünf Monate ist nachfolgend dargestellt. Verwenden Sie einen zweimonatigen gleitenden Durchschnitt, um eine Prognose für die Nachfrage im Monat 6 zu generieren. Wenden Sie eine exponentielle Glättung mit einer Glättungskonstante von 0,9 an, um eine Prognose für die Nachfrage nach Nachfrage im Monat 6 zu generieren. Welche dieser beiden Prognosen bevorzugen Sie und warumDie zweimonatigen Umzugsweisen Durchschnitt für Monate zwei bis fünf ist gegeben durch: Die Prognose für den Monat sechs ist nur der gleitende Durchschnitt für den Monat vor, dass dh der gleitende Durchschnitt für Monat 5 m 5 2350. Anwenden exponentielle Glättung mit einer Glättung Konstante von 0,9 erhalten wir: Wie zuvor Die Prognose für den Monat sechs ist nur der Durchschnitt für den Monat 5 M 5 2386 Um die beiden Prognosen zu vergleichen, berechnen wir die mittlere quadratische Abweichung (MSD). Wenn wir dies tun, finden wir für den gleitenden Mittelwert MSD (15 - 19) sup2 (18 - 23) sup2 (21 - 24) sup23 16.67 und für den exponentiell geglätteten Durchschnitt mit einer Glättungskonstante von 0,9 MSD (13 - 17) sup2 (16,60 - 19) sup2 (18.76 - 23) sup2 (22.58 - 24) sup24 10.44 Insgesamt sehen wir dann, dass die exponentielle Glättung den besten einen Monat voraus prognostiziert, da es eine niedrigere MSD hat. Daher bevorzugen wir die Prognose von 2386, die durch exponentielle Glättung erzeugt wurde. Prognosebeispiel 1994 UG-Prüfung Die nachstehende Tabelle zeigt die Nachfrage nach einem neuen Aftershave in einem Shop für jeden der letzten 7 Monate. Berechnen Sie einen zweimonatigen gleitenden Durchschnitt für Monate zwei bis sieben. Was wäre Ihre Prognose für die Nachfrage in Monat acht Bewerben exponentielle Glättung mit einer Glättung Konstante von 0,1, um eine Prognose für die Nachfrage in Monat acht ableiten. Welche der beiden Prognosen für den Monat acht bevorzugen Sie und warum der Ladenbesitzer glaubt, dass die Kunden auf diese neue Aftershave von anderen Marken wechseln. Besprechen Sie, wie Sie dieses Schaltverhalten modellieren und die Daten angeben, die Sie benötigen, um zu bestätigen, ob diese Umschaltung erfolgt oder nicht. Die zwei Monate gleitenden Durchschnitt für die Monate zwei bis sieben ist gegeben durch: Die Prognose für den Monat acht ist nur der gleitende Durchschnitt für den Monat vor, dass dh die gleitenden Durchschnitt für Monat 7 m 7 46. Anwendung exponentielle Glättung mit einer Glättung Konstante von 0,1 wir Erhalten: Wie schon vor der Prognose für den Monat acht ist nur der Durchschnitt für den Monat 7 M 7 31,11 31 (da wir keine gebrochene Nachfrage haben können). Um die beiden Prognosen zu vergleichen, berechnen wir die mittlere quadratische Abweichung (MSD). Wenn wir dies tun, finden wir das für den gleitenden Durchschnitt und für den exponentiell geglätteten Durchschnitt mit einer Glättungskonstante von 0,1 Insgesamt sehen wir dann, dass der zweimonatige gleitende Durchschnitt den besten einen Monat voraus prognostiziert, da er eine niedrigere MSD hat. Daher bevorzugen wir die Prognose von 46, die durch den zweimonatigen gleitenden Durchschnitt produziert wurde. Um das Umschalten zu untersuchen, müssten wir ein Markov-Prozessmodell verwenden, in dem die Ländermarken und die notwendigen Statusinformationen und Kundenwechselwahrscheinlichkeiten (aus Umfragen) benötigt werden. Wir müssten das Modell auf historische Daten ausführen, um zu sehen, ob wir zwischen dem Modell und dem historischen Verhalten passen. Prognosebeispiel 1992 UG-Prüfung Die nachstehende Tabelle zeigt die Nachfrage nach einer bestimmten Marke von Rasiermesser in einem Geschäft für jeden der letzten neun Monate. Berechnen Sie einen dreimonatigen gleitenden Durchschnitt für Monate drei bis neun. Was wäre Ihre Prognose für die Nachfrage in Monat zehn Bewerben exponentielle Glättung mit einer Glättung Konstante von 0,3, um eine Prognose für die Nachfrage in Monat zehn ableiten. Welche der beiden Prognosen für den Monat zehn bevorzugen Sie und warum Der dreimonatige gleitende Durchschnitt für die Monate 3 bis 9 ist gegeben durch: Die Prognose für den Monat 10 ist nur der gleitende Durchschnitt für den Monat vor dem dh der gleitende Durchschnitt für Monat 9 m 9 20.33. Daher ist die Prognose für den Monat 10. 20. Die Anwendung einer exponentiellen Glättung mit einer Glättungskonstante von 0,3 ergibt sich: Wie vorher ist die Prognose für den Monat 10 nur der Durchschnitt für den Monat 9 M 9 18,57 19 (wie wir Kann keine gebrochene Nachfrage haben). Um die beiden Prognosen zu vergleichen, berechnen wir die mittlere quadratische Abweichung (MSD). Wenn wir dies tun, finden wir das für den gleitenden Durchschnitt und für den exponentiell geglätteten Durchschnitt mit einer Glättungskonstante von 0,3 Insgesamt sehen wir dann, dass der dreimonatige gleitende Durchschnitt den besten einen Monat voraus prognostiziert, da er eine niedrigere MSD hat. Daher bevorzugen wir die Prognose von 20, die durch den dreimonatigen gleitenden Durchschnitt produziert wurde. Vorhersage Beispiel 1991 UG Prüfung Die folgende Tabelle zeigt die Nachfrage nach einer bestimmten Marke von Faxgerät in einem Kaufhaus in jedem der letzten zwölf Monate. Berechnen Sie den viermonatigen gleitenden Durchschnitt für die Monate 4 bis 12. Was wäre Ihre Prognose für die Nachfrage im Monat 13 Bewerben Sie exponentielle Glättung mit einer Glättungskonstante von 0,2, um eine Prognose für die Nachfrage im Monat 13 abzuleiten. Welche der beiden Prognosen für den Monat 13 Bevorzugen Sie und warum Welche anderen Faktoren, die in den obigen Berechnungen nicht berücksichtigt wurden, könnten die Nachfrage nach dem Faxgerät im Monat 13 beeinflussen. Der viermonatige gleitende Durchschnitt für die Monate 4 bis 12 ist gegeben durch: m 4 (23 19 15 12) 4 17,25 m 5 (27 23 19 15) 4 21 m 6 (30 27 23 19) 4 24,75 m 7 (32 30 27 23) 4 28 m 8 (33 32 30 27) 4 30,5 m 9 (37 33 32 30) 4 33 m 10 (41 37 33 32) 4 35,75 m 11 (49 41 37 33) 4 40 m 12 (58 49 41 37) 4 46,25 Die Prognose für den Monat 13 ist nur der gleitende Durchschnitt für den Monat davor, dh der gleitende Durchschnitt Für Monat 12 m 12 46,25. Daher ist die Prognose für den Monat 13 46. Die Anwendung einer exponentiellen Glättung mit einer Glättungskonstante von 0,2 erhalten wir: Wie vorher ist die Prognose für den Monat 13 nur der Durchschnitt für den Monat 12 M 12 38,618 39 (wie wir Kann keine gebrochene Nachfrage haben). Um die beiden Prognosen zu vergleichen, berechnen wir die mittlere quadratische Abweichung (MSD). Wenn wir dies tun, finden wir das für den gleitenden Durchschnitt und für den exponentiell geglätteten Durchschnitt mit einer Glättungskonstante von 0,2 Insgesamt sehen wir dann, dass der viermonatige gleitende Durchschnitt den besten einen Monat voraus prognostiziert, da er eine niedrigere MSD hat. Daher bevorzugen wir die Prognose von 46, die durch den viermonatigen gleitenden Durchschnitt produziert wurde. Saisonale Nachfrage Werbung Preisänderungen, sowohl diese Marke und andere Marken allgemeine wirtschaftliche Situation neue Technologie Vorhersage Beispiel 1989 UG Prüfung Die Tabelle unten zeigt die Nachfrage nach einer bestimmten Marke von Mikrowellenherd in einem Kaufhaus in jedem der letzten zwölf Monate. Berechnen Sie einen sechsmonatigen gleitenden Durchschnitt für jeden Monat. Was wäre Ihre Prognose für die Nachfrage in Monat 13 Bewerben exponentielle Glättung mit einer Glättung Konstante von 0,7, um eine Prognose für die Nachfrage im Monat 13. Eine der beiden Prognosen für Monat 13 bevorzugen Sie und warum Jetzt können wir nicht berechnen, eine sechs Monat gleitenden Durchschnitt, bis wir mindestens 6 Beobachtungen haben - dh wir können nur einen solchen Durchschnitt ab dem 6. Monat berechnen. Wir haben also: m 6 (34 32 30 29 31 27) 6 30,50 m 7 (36 34 32 30 29 31) 6 32,00 m 8 (35 36 34 32 30 29) 6 32,67 m 9 (37 35 36 34 32 30) 6 34,00 m 10 (39 37 35 36 34 32) 6 35,50 m 11 (40 39 37 35 36 34) 6 36,83 m 12 (42 40 39 37 35 36) 6 38,17 Die Prognose für den Monat 13 ist nur der gleitende Durchschnitt für die Monat vor dem dh der gleitende Durchschnitt für Monat 12 m 12 38,17. Daher ist die Prognose für den Monat 13 38. Die Anwendung einer exponentiellen Glättung mit einer Glättungskonstante von 0,7 ergibt sich: Gewichtete Bewegungsdurchschnitte: Die Grundlagen Im Laufe der Jahre haben Techniker zwei Probleme mit dem einfachen gleitenden Durchschnitt gefunden. Das erste Problem liegt im Zeitrahmen des gleitenden Mittelwertes (MA). Die meisten technischen Analysten glauben, dass Preisaktion. Der Eröffnungs - oder Schlussbestandspreis, ist nicht genug, auf die für die ordnungsgemäße Vorhersage des Kaufs oder der Verkaufssignale der MAs Crossover-Aktion abzusehen ist. Um dieses Problem zu lösen, weisen die Analysten nunmehr die aktuellsten Preisdaten mit dem exponentiell geglätteten gleitenden Durchschnitt (EMA) zu. (Erfahren Sie mehr bei der Erforschung der exponentiell gewogenen bewegten Durchschnitt.) Ein Beispiel Zum Beispiel, mit einem 10-Tage-MA, würde ein Analytiker den Schlusskurs des 10. Tages und multiplizieren diese Zahl um 10, der neunte Tag um neun, der achte Tag für acht und so weiter zum ersten der MA. Sobald die Summe bestimmt worden ist, würde der Analytiker dann die Zahl durch die Addition der Multiplikatoren teilen. Wenn Sie die Multiplikatoren des 10-Tage-MA-Beispiels hinzufügen, ist die Zahl 55. Dieser Indikator wird als linear gewichteter gleitender Durchschnitt bezeichnet. (Für verwandte Lesung, check out Simple Moving Averages machen Trends Stand out.) Viele Techniker sind festgläubig in der exponentiell geglätteten gleitenden Durchschnitt (EMA). Dieser Indikator wurde in so vielen verschiedenen Weisen erklärt, dass er Studenten und Investoren gleichermaßen verwechselt. Vielleicht kommt die beste Erklärung von John J. Murphys Technische Analyse der Finanzmärkte, (veröffentlicht vom New York Institute of Finance, 1999): Der exponentiell geglättete gleitende Durchschnitt adressiert beide Probleme, die mit dem einfachen gleitenden Durchschnitt verbunden sind. Zuerst weist der exponentiell geglättete Durchschnitt den neueren Daten ein größeres Gewicht zu. Daher ist es ein gewichteter gleitender Durchschnitt. Aber während es den vergangenen Preisdaten eine geringere Bedeutung zuweist, enthält es in der Berechnung alle Daten im Leben des Instruments. Darüber hinaus ist der Benutzer in der Lage, die Gewichtung anpassen, um mehr oder weniger Gewicht auf die jüngsten Tage Preis, die zu einem Prozentsatz der vorherigen Tage Wert hinzugefügt wird. Die Summe der beiden Prozentwerte addiert sich zu 100. Beispielsweise könnte dem letzten Tagepreis ein Gewicht von 10 (.10) zugewiesen werden, der zu den vorherigen Tagen Gewicht von 90 (.90) hinzugefügt wird. Dies gibt den letzten Tag 10 der Gesamtgewichtung. Dies wäre das Äquivalent zu einem 20-Tage-Durchschnitt, indem man den letzten Tage Preis einen kleineren Wert von 5 (.05). Abbildung 1: Exponentiell geglättete Moving Average Die obige Grafik zeigt den Nasdaq Composite Index von der ersten Woche im August 2000 bis zum 1. Juni 2001. Wie Sie deutlich sehen können, ist die EMA, die in diesem Fall die Schlusskursdaten über einen Neun-Tage-Periode, hat definitive Verkaufssignale am 8. September (gekennzeichnet durch einen schwarzen Pfeil nach unten). Dies war der Tag, an dem der Index unter dem Niveau von 4.000 unterging. Der zweite schwarze Pfeil zeigt ein weiteres heruntergekommenes Bein, das die Techniker eigentlich erwarten. Die Nasdaq konnte nicht genug Volumen und Interesse von den Einzelhandelsanlegern erzeugen, um die 3.000 Mark zu brechen. Dann tauchte es wieder auf den Boden bei 1619.58 am 4. April. Der Aufwärtstrend vom 12. April ist durch einen Pfeil markiert. Hier schloss der Index um 1.961.46, und Techniker begannen, institutionelle Fondsmanager zu sehen, die anfangen, einige Schnäppchen wie Cisco, Microsoft und einige der energiebezogenen Fragen aufzuheben. (Lesen Sie unsere verwandten Artikel: Moving Average Envelopes: Verfeinerung eines beliebten Trading-Tool und Moving Average Bounce.) Ein Maß für die Beziehung zwischen einer Veränderung in der Menge von einem bestimmten Gut gefordert und eine Änderung in seinem Preis. Preis. Der Gesamtdollarmarktwert aller ausstehenden Aktien der Gesellschaft039s. Die Marktkapitalisierung erfolgt durch Multiplikation. Frexit kurz für quotFrench exitquot ist ein französischer Spinoff des Begriffs Brexit, der entstand, als das Vereinigte Königreich stimmte. Ein Auftrag mit einem Makler, der die Merkmale der Stop-Order mit denen einer Limit-Order kombiniert. Ein Stop-Limit-Auftrag wird. Eine Finanzierungsrunde, in der Anleger eine Aktie von einer Gesellschaft mit einer niedrigeren Bewertung erwerben als die Bewertung, Eine ökonomische Theorie der Gesamtausgaben in der Wirtschaft und ihre Auswirkungen auf die Produktion und Inflation. Keynesianische Ökonomie wurde entwickelt.
Comments
Post a Comment